skip to main content


Search for: All records

Creators/Authors contains: "Sharon, Keren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the spatially resolved measurements of a cool galactic outflow in the gravitationally lensed galaxy RCS0327 at z ≈ 1.703 using VLT/MUSE IFU observations. We probe the cool outflowing gas, traced by blueshifted Mg ii and Fe ii absorption lines, in 15 distinct regions of the same galaxy in its image-plane. Different physical regions, 5 – 7 kpc apart within the galaxy, drive the outflows at different velocities (Vout ∼ −161 to −240 km s−1), and mass outflow rates ($\dot{M}_{out} \sim 183$ – 527 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$). The outflow velocities from different regions of the same galaxy vary by 80 km s−1, which is comparable to the variation seen in a large sample of star-burst galaxies in the local universe. Using multiply lensed images of RCS0327, we probe the same star-forming region at different spatial scales (0.5–25 kpc2), we find that outflow velocities vary between ∼ −120 and −242 km s−1, and the mass outflow rates vary between ∼37 and 254 ${\rm M}_{\odot }\, \mathrm{yr}^{-1}$. The outflow momentum flux in this galaxy is ≥ 100% of the momentum flux provided by star formation in individual regions, and outflow energy flux is ≈ 10% of the total energy flux provided by star formation. These estimates suggest that the outflow in RCS0327 is energy driven. This work shows the importance of small scale variations of outflow properties due to the variations of local stellar properties of the host galaxy in the context of galaxy evolution.

     
    more » « less
  2. In this work, we present a constraint on the abundance of supergiant (SG) stars at redshiftz ≈ 1, based on recent observations of a strongly lensed arc at this redshift. First we derived a free-form model of MACS J0416.1-2403 using data from the Beyond Ultra-deep Frontier Fields and Legacy Observations (BUFFALO) program. The new lens model is based on 72 multiply lensed galaxies that produce 214 multiple images, making it the largest sample of spectroscopically confirmed lensed galaxies on this cluster. The larger coverage in BUFFALO allowed us to measure the shear up to the outskirts of the cluster, and extend the range of lensing constraints up to ∼1 Mpc from the central region, providing a mass estimate up to this radius. As an application, we make predictions for the number of high-redshift multiply lensed galaxies detected in future observations with theJames WebbSpace Telescope (JWST). Then we focus on a previously known lensed galaxy atz = 1.0054, nicknamed Spock, which contains four previously reported transients. We interpret these transients as microcaustic crossings of SG stars and explain how we computed the probability of such events. Based on simplifications regarding the stellar evolution, we find that microlensing (by stars in the intracluster medium) of SG stars atz = 1.0054 can fully explain these events. The inferred abundance of SG stars is consistent with either (1) a number density of stars with bolometric luminosities beyond the Humphreys-Davidson (HD) limit (Lmax ≈ 6 × 105Lfor red stars), which is below ∼400 stars kpc−2, or (2) the absence of stars beyond the HD limit but with a SG number density of ∼9000 kpc−2for stars with luminosities between 105Land 6 × 105L. This is equivalent to one SG star per 10 × 10 pc2. Finally, we make predictions for future observations with JWST’s NIRcam. We find that in observations made with theF200Wfilter that reach 29 mag AB, if cool red SG stars exist atz ≈ 1 beyond the HD limit, they should be easily detected in this arc.

     
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  3. Abstract

    With two central galaxies engaged in a major merger and a remarkable chain of 19 young stellar superclusters wound around them in projection, the galaxy cluster SDSS J1531+3414 (z= 0.335) offers an excellent laboratory to study the interplay between mergers, active galactic nucleus (AGN) feedback, and star formation. New Chandra X-ray imaging reveals rapidly cooling hot (T∼ 106K) intracluster gas, with two “wings” forming a concave density discontinuity near the edge of the cool core. LOFAR 144 MHz observations uncover diffuse radio emission strikingly aligned with the “wings,” suggesting that the “wings” are actually the opening to a giant X-ray supercavity. The steep radio emission is likely an ancient relic of one of the most energetic AGN outbursts observed, with 4pV> 1061erg. To the north of the supercavity, GMOS detects warm (T∼ 104K) ionized gas that enshrouds the stellar superclusters but is redshifted up to +800 km s−1with respect to the southern central galaxy. The Atacama Large Millimeter/submillimeter Array detects a similarly redshifted ∼1010Mreservoir of cold (T∼ 102K) molecular gas, but it is offset from the young stars by ∼1–3 kpc. We propose that the multiphase gas originated from low-entropy gas entrained by the X-ray supercavity, attribute the offset between the young stars and the molecular gas to turbulent intracluster gas motions, and suggest that tidal interactions stimulated the “beads-on-a-string” star formation morphology.

     
    more » « less
  4. Abstract

    We present results of [Cii] 158μm emission line observations, and report the spectroscopic redshift confirmation of a strongly lensed (μ∼ 20) star-forming galaxy, MACS0308-zD1 atz= 6.2078 ± 0.0002. The [Cii] emission line is detected with a signal-to-noise ratio >6 within the rest-frame UV-bright clump of the lensed galaxy (zD1.1) and exhibits multiple velocity components; the narrow [Cii] has a velocity full width half maximum (FWHM) of 110 ± 20 km s−1, while broader [Cii] is seen with an FWHM of 230 ± 50 km s−1. The broader [Cii] component is blueshifted (−80 ± 20 km s−1) with respect to the narrow [Cii] component, and has a morphology that extends beyond the UV-bright clump. We find that, while the narrow [Cii] emission is most likely associated with zD1.1, the broader component is possibly associated with a physically distinct gas component from zD1.1 (e.g., outflowing or inflowing gas). Based on the nondetection ofλ158μmdust continuum, we find that MACS0308-zD1's star formation activity occurs in a dust-free environment indicated by a strong upper limit of infrared luminosity ≲9 × 108L. Targeting this strongly lensed faint galaxy for follow-up Atacama Large Millimeter/submillimeter Array and JWST observations will be crucial to characterize the details of typical galaxy growth in the early Universe.

     
    more » « less
  5. ABSTRACT

    Secure confirmation that a gravitational wave (GW) has been gravitationally lensed would bring together these two pillars of General Relativity for the first time. This breakthrough is challenging for many reasons, including: GW sky localization uncertainties dwarf the angular scale of gravitational lensing, the mass and structure of gravitational lenses is diverse, the mass function of stellar remnant compact objects is not yet well constrained, and GW detectors do not operate continuously. We introduce a new approach that is agnostic to the mass and structure of the lenses, compare the efficiency of different methods for lensed GW discovery, and explore detection of lensed kilonova counterparts as a direct method for localizing candidates. Our main conclusions are: (1) lensed neutron star mergers (NS–NS) are magnified into the ‘mass gap’ between NS and black holes, therefore selecting candidates from public GW alerts with high mass gap probability is efficient, (2) the rate of detectable lensed NS–NS will approach one per year in the mid-2020s, (3) the arrival time difference between lensed NS–NS images is $1\, \rm s\lesssim \Delta \mathit{ t}\lesssim 1\, yr$, and thus well-matched to the operations of GW detectors and optical telescopes, (4) lensed kilonova counterparts are faint at peak (e.g. rAB ≃ 24–26 in the mid-2020s), fade quickly ($d\lt 2\, \rm d$), and are detectable with target of opportunity observations with large wide-field telescopes. For example, just ≲ 0.25 per cent of Vera C. Rubin Observatory’s observing time will be sufficient to follow up one well-localized candidate per year. Our predictions also provide a physically well-defined basis for exploring electromagnetically the exciting new ‘mass gap’ discovery space.

     
    more » « less
  6. The gravitationally lensed supernova Refsdal appeared in multiple images produced through gravitational lensing by a massive foreground galaxy cluster. After the supernova appeared in 2014, lens models of the galaxy cluster predicted that an additional image of the supernova would appear in 2015, which was subsequently observed. We use the time delays between the images to perform a blinded measurement of the expansion rate of the Universe, quantified by the Hubble constant (H0). Using eight cluster lens models, we inferH0=64.84.3+4.4 kilometers per second per megaparsec. Using the two models most consistent with the observations, we findH0=66.63.3+4.1 kilometers per second per megaparsec. The observations are best reproduced by models that assign dark-matter halos to individual galaxies and the overall cluster.

     
    more » « less
    Free, publicly-accessible full text available June 9, 2024
  7. We present a Hubble Space Telescope (HST) weak gravitational lensing study of nine distant and massive galaxy clusters with redshifts 1.0 ≲  z  ≲ 1.7 ( z median  = 1.4) and Sunyaev Zel’dovich (SZ) detection significance ξ  > 6.0 from the South Pole Telescope Sunyaev Zel’dovich (SPT-SZ) survey. We measured weak lensing galaxy shapes in HST/ACS F 606 W and F 814 W images and used additional observations from HST/WFC3 in F 110 W and VLT/FORS2 in U HIGH to preferentially select background galaxies at z  ≳ 1.8, achieving a high purity. We combined recent redshift estimates from the CANDELS/3D-HST and HUDF fields to infer an improved estimate of the source redshift distribution. We measured weak lensing masses by fitting the tangential reduced shear profiles with spherical Navarro-Frenk-White (NFW) models. We obtained the largest lensing mass in our sample for the cluster SPT-CL J2040−4451, thereby confirming earlier results that suggest a high lensing mass of this cluster compared to X-ray and SZ mass measurements. Combining our weak lensing mass constraints with results obtained by previous studies for lower redshift clusters, we extended the calibration of the scaling relation between the unbiased SZ detection significance ζ and the cluster mass for the SPT-SZ survey out to higher redshifts. We found that the mass scale inferred from our highest redshift bin (1.2 <  z  < 1.7) is consistent with an extrapolation of constraints derived from lower redshifts, albeit with large statistical uncertainties. Thus, our results show a similar tendency as found in previous studies, where the cluster mass scale derived from the weak lensing data is lower than the mass scale expected in a Planckν ΛCDM (i.e. ν Λ cold dark matter) cosmology given the SPT-SZ cluster number counts. 
    more » « less
  8. ABSTRACT

    We present size measurements of 78 high-redshift (z ≥ 5.5) galaxy candidates from the Reionization Lensing Cluster Survey (RELICS). These distant galaxies are well resolved due to the gravitational lensing power of foreground galaxy clusters, imaged by the Hubble Space Telescope and the Spitzer Space Telescope. We compute sizes using the forward-modelling code lenstruction and account for magnification using public lens models. The resulting size–magnitude measurements confirm the existence of many small galaxies with effective radii Reff < 200 pc in the early Universe, in agreement with previous studies. In addition, we highlight compact and highly star-forming sources with star formation rate surface densities $\Sigma _\text{SFR}\gt 10\, \mathrm{M}_\odot \, \text{yr}^{-1}\, \text{kpc}^{-2}$ as possible Lyman continuum leaking candidates that could be major contributors to the process of reionization. Future spectroscopic follow-up of these compact galaxies (e.g. with the James Webb Space Telescope) will further clarify their role in reionization and the physics of early star formation.

     
    more » « less
  9. Abstract

    We report the discovery of four galaxy candidates observed 450–600 Myr after the Big Bang with photometric redshifts betweenz∼ 8.3 and 10.2 measured using James Webb Space Telescope (JWST) NIRCam imaging of the galaxy cluster WHL0137−08 observed in eight filters spanning 0.8–5.0μm, plus nine Hubble Space Telescope filters spanning 0.4–1.7μm. One candidate is gravitationally lensed with a magnification ofμ∼ 8, while the other three are located in a nearby NIRCam module with expected magnifications ofμ≲ 1.1. Using SED fitting, we estimate the stellar masses of these galaxies are typically in the rangelogM/M= 8.3–8.7. All appear young, with mass-weighted ages <240 Myr, low dust contentAV< 0.15 mag, and specific star formation rates sSFR ∼0.25–10 Gyr−1for most. Onez∼ 9 candidate is consistent with an age <5 Myr and an sSFR ∼10 Gyr−1, as inferred from a strong F444W excess, implying [Oiii]+Hβrest-frame equivalent width ∼2000 Å, although an olderz∼ 10 object is also allowed. Anotherz∼ 9 candidate is lensed into an arc 2.″4 long with a magnification ofμ∼ 8. This arc is the most spatially resolved galaxy atz∼ 9 known to date, revealing structures ∼30 pc across. Follow-up spectroscopy of WHL0137−08 with JWST/NIRSpec will be useful to spectroscopically confirm these high-redshift galaxy candidates and to study their physical properties in more detail.

     
    more » « less